Copied to
clipboard

G = C922C6order 486 = 2·35

2nd semidirect product of C92 and C6 acting faithfully

metabelian, supersoluble, monomial

Aliases: C922C6, C9⋊D92C3, C922C32C2, He3⋊C3.2S3, C32.15(C32⋊C6), C3.3(He3.2S3), (C3×C9).28(C3×S3), SmallGroup(486,37)

Series: Derived Chief Lower central Upper central

C1C92 — C922C6
C1C3C32C3×C9C92C922C3 — C922C6
C92 — C922C6
C1

Generators and relations for C922C6
 G = < a,b,c | a9=b9=c6=1, ab=ba, cac-1=a-1b-1, cbc-1=a3b2 >

81C2
3C3
27C3
54C3
27S3
81C6
81S3
3C9
3C9
3C9
3C9
9C32
18C32
9C3⋊S3
27D9
27D9
27D9
27D9
27C3×S3
3C3×C9
3He3
6He3
3C9⋊S3
9C32⋊C6
9C9⋊S3
2He3⋊C3
3He3.2S3

Character table of C922C6

 class 123A3B3C3D3E3F6A6B9A9B9C9D9E9F9G9H9I9J9K9L
 size 18126272754548181666666666666
ρ11111111111111111111111    trivial
ρ21-1111111-1-1111111111111    linear of order 2
ρ31-111ζ3ζ32ζ3ζ32ζ65ζ6111111111111    linear of order 6
ρ41111ζ32ζ3ζ32ζ3ζ32ζ3111111111111    linear of order 3
ρ51111ζ3ζ32ζ3ζ32ζ3ζ32111111111111    linear of order 3
ρ61-111ζ32ζ3ζ32ζ3ζ6ζ65111111111111    linear of order 6
ρ7202222-1-100-1-1-1-1-1222-1-1-1-1    orthogonal lifted from S3
ρ82022-1+-3-1--3ζ65ζ600-1-1-1-1-1222-1-1-1-1    complex lifted from C3×S3
ρ92022-1--3-1+-3ζ6ζ6500-1-1-1-1-1222-1-1-1-1    complex lifted from C3×S3
ρ10606600000000000-3-3-30000    orthogonal lifted from C32⋊C6
ρ11606-300000098+2ζ97949298+2ζ979492ζ95+2ζ94929ζ95+2ζ94929ζ95+2ζ9492900098949299894929989492998+2ζ979492    orthogonal lifted from He3.2S3
ρ1260-3000000095+2ζ94+29594-1989-198+2ζ9+2989-198+2ζ979492ζ95+2ζ9492998949299792-197+2ζ92+29792-19594-1    orthogonal faithful
ρ1360-3000000098+2ζ9+2989-19792-197+2ζ92+29792-1ζ95+2ζ94929989492998+2ζ9794929594-195+2ζ94+29594-1989-1    orthogonal faithful
ρ1460-300000009594-19594-198+2ζ9+2989-1989-198+2ζ979492ζ95+2ζ94929989492997+2ζ92+29792-19792-195+2ζ94+2    orthogonal faithful
ρ15606-3000000ζ95+2ζ94929ζ95+2ζ9492998949299894929989492900098+2ζ97949298+2ζ97949298+2ζ979492ζ95+2ζ94929    orthogonal lifted from He3.2S3
ρ1660-300000009792-19792-195+2ζ94+29594-19594-1989492998+2ζ979492ζ95+2ζ9492998+2ζ9+2989-1989-197+2ζ92+2    orthogonal faithful
ρ1760-30000000989-198+2ζ9+29792-19792-197+2ζ92+2ζ95+2ζ94929989492998+2ζ9794929594-19594-195+2ζ94+2989-1    orthogonal faithful
ρ18606-30000009894929989492998+2ζ97949298+2ζ97949298+2ζ979492000ζ95+2ζ94929ζ95+2ζ94929ζ95+2ζ949299894929    orthogonal lifted from He3.2S3
ρ1960-300000009594-195+2ζ94+2989-1989-198+2ζ9+298+2ζ979492ζ95+2ζ9492998949299792-19792-197+2ζ92+29594-1    orthogonal faithful
ρ2060-300000009792-197+2ζ92+29594-19594-195+2ζ94+2989492998+2ζ979492ζ95+2ζ94929989-1989-198+2ζ9+29792-1    orthogonal faithful
ρ2160-30000000989-1989-197+2ζ92+29792-19792-1ζ95+2ζ94929989492998+2ζ97949295+2ζ94+29594-19594-198+2ζ9+2    orthogonal faithful
ρ2260-3000000097+2ζ92+29792-19594-195+2ζ94+29594-1989492998+2ζ979492ζ95+2ζ94929989-198+2ζ9+2989-19792-1    orthogonal faithful

Permutation representations of C922C6
On 27 points - transitive group 27T158
Generators in S27
(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 7 6 2 8 4 3 9 5)(10 17 15 13 11 18 16 14 12)(19 27 26 25 24 23 22 21 20)
(1 10 27)(2 16 24 3 13 21)(4 14 22 8 15 23)(5 11 19 7 18 26)(6 17 25 9 12 20)

G:=sub<Sym(27)| (10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,7,6,2,8,4,3,9,5)(10,17,15,13,11,18,16,14,12)(19,27,26,25,24,23,22,21,20), (1,10,27)(2,16,24,3,13,21)(4,14,22,8,15,23)(5,11,19,7,18,26)(6,17,25,9,12,20)>;

G:=Group( (10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,7,6,2,8,4,3,9,5)(10,17,15,13,11,18,16,14,12)(19,27,26,25,24,23,22,21,20), (1,10,27)(2,16,24,3,13,21)(4,14,22,8,15,23)(5,11,19,7,18,26)(6,17,25,9,12,20) );

G=PermutationGroup([[(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,7,6,2,8,4,3,9,5),(10,17,15,13,11,18,16,14,12),(19,27,26,25,24,23,22,21,20)], [(1,10,27),(2,16,24,3,13,21),(4,14,22,8,15,23),(5,11,19,7,18,26),(6,17,25,9,12,20)]])

G:=TransitiveGroup(27,158);

Matrix representation of C922C6 in GL6(𝔽19)

100000
010000
0071400
005200
000025
0000147
,
7140000
520000
0017700
0012500
0000714
000052
,
0000177
000052
1770000
520000
0017700
005200

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,5,0,0,0,0,14,2,0,0,0,0,0,0,2,14,0,0,0,0,5,7],[7,5,0,0,0,0,14,2,0,0,0,0,0,0,17,12,0,0,0,0,7,5,0,0,0,0,0,0,7,5,0,0,0,0,14,2],[0,0,17,5,0,0,0,0,7,2,0,0,0,0,0,0,17,5,0,0,0,0,7,2,17,5,0,0,0,0,7,2,0,0,0,0] >;

C922C6 in GAP, Magma, Sage, TeX

C_9^2\rtimes_2C_6
% in TeX

G:=Group("C9^2:2C6");
// GroupNames label

G:=SmallGroup(486,37);
// by ID

G=gap.SmallGroup(486,37);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,224,338,4755,2817,453,3244,3250,11669]);
// Polycyclic

G:=Group<a,b,c|a^9=b^9=c^6=1,a*b=b*a,c*a*c^-1=a^-1*b^-1,c*b*c^-1=a^3*b^2>;
// generators/relations

Export

Subgroup lattice of C922C6 in TeX
Character table of C922C6 in TeX

׿
×
𝔽